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LAMINAR FREE CONVECTION ON A VERTICAL PIATE WITH PRESCRIBED NONUNIFORM
WALL HEAT FLUX OR PRESCRIBED NONUNIFORM WALI. TEMPERATURE

By E. M. Sparrow

SUMMARY

An analysis is made for laminar free convection on a vertical plate
with nonuniform thermal conditions at the surface. Prescribed variations
are considered for the wall heat flux and for the wall temperature.

For the situation where the wall-heat-flux variation is prescribed,
graphs are presented from which the resulting wall-temperature variation
may be obtained. Local heat-transfer coefficients may be readily deter-
mined using the information given on the graphs. Results for the impor-
tant special case of uniform wall heat flux are also given.

For the situstion where the wall-temperature variation is prescribed,
graphs are presented fram which the over-all rate of heat transfer from
any length of the plate may be obtained. Another set of graphs is pre-
sented for obtaining local hest-transfer coefficients.

All the aforementioned results are given for fluilds having Prandtl
numbers in the range 0.0l to 1000.

The flow is taeken to be of the boundary-lasyer type, and the problem
is formulated by the KArmén-Pohlhesusen method. The solution of the result-
ing equetions is achieved by series expansion. The first term of the
series corresponds to the result for uniform thermal conditions on the
wall. The succeeding terms give the influence of the nonuniform thermal
conditions. The first five terms of the serles have been calculated.

TWTRODUCTION

Laminar free convection on a vertical plate has been a subject of
gtudy since 188L. Most of the analytical work has been done for the sit-
uvation where the well temperature is uniform over the entire surface.

An exact solution of the boundary-layer differential equations for free
convection on a vertical flat plate with uniform wall temperature is
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given in reference 1 for several Prandtl numbers in the range 0.0l to
1000. Reference 1 also lists other work on the uniform-wall-temperature
problem. The Kérmin-Pohlhasusen method is applied to the uniform-wall-
temperature case in references 2 (pp. 671-673) and 3 (pp. 158-163). The
results reported in these references agree well with those from the ex-
act solution of reference 1.

Considerably less anaelytical work has been done for the situation
where the heat transfer is uniform over the surface. An exact solution
of the boundary-layer differential equations for the uniform-heat-flux
case is given in reference 4, which also contains results calculated by
the Kérmén-Pohlhausen method. The results of the exact solution and
those from the Kédrmén-Pohlhausen method are in good agreement.

Accounts of experimentel investigatioms of free comvection on ver-
tical surfaces are given in references 1 to 6.

In a large number of technical applications the thermal conditions
on the surface are nonuniform. - These nonuniformities in thermal condi-
tions may be grouped into two categories:

(1) The heat flux may be prescribed to vary over the surface. It
is then of interest to calculate the resulting variation of the surface

temperature.

(2) The variation of the temperature on the surface may be pre-
scribed. It is then of interest to calculate either the local rate of
hest transfer at various locations on the surface, or the over-all rate
of heat transfer from the surface, or both.

This report presents & first attempt at solution of the free-
convection problem on e flat plate for these two categories of non-
uniform thermal conditions at the surface.

This analysis was mede at the NACA Lewis laboratory.

GENERAT. CONSIDERATIONS

The physical problem and the coordinate system are indicated in the
following sketches, which show a vertical surface that may represent a
flat plate or a vertical cylinder of large diameter:
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Sketch (a). - Heat transfer from Sketch (b). - Heat transfer fram
wall to fluid and tw > ta fluid to wall and tw < ta

everywvhere. everywhere

Sketch (a) depicts a situation in which the heat transfer is from
the wall to the fluid at all points on the surface and the local wall
temperature +t, everywhere exceeds the ambient temperature tg- On the
wall, either the heat flux may be designated to vary with x, or the
vall temperature may be prescribed to vary with x. (No variations are
considered in the direction of the z-coordinate, normal to the page;
the problem is thus taken to be two dimensional.) The fluid in the
neighborhood of the wall has a higher tempersture and a lower densit
then the fluid far from the wall. Thus, because of buoyancy, there will
be established an upwerd flow of fluid in the neighborhood of the wall.
The region of space in which the upward flow primarily occurs is called
the velocity boundary layer. A thermal boundary layer is defined as that
region of space where the temperature t deviates markedly from the am-
bient temperature ta. In generael, the velocity and thermal boundary

layers have different thicknesses, the relative magnitudes depending upon
the fluid properties. Both boundary layers are assumed to have zero
thickness at the leading edge (x = 0). The velocity boundary layer is
shown schematically in the sketch.

Sketch (b) shows a situation in which the heat transfer is from the
fluid to the wall at all points of the surface and the local wall temper-
ature t, is everywhere less than ty- Agein, on the wall, either the
heat flux or the temperature may be prescribed to vary with x. Here,
the flow of fluid in the boundary layer is downward as shown.

lThis refers to fluids showing the usual trend of density decreasing
with increasing temperature.
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If the coordinate systems are taken as shown in the sketches, the
method of anelysis and the results for the heat-transfer parameters are
the same for these two situations; and there will be no need to treat
them separately. 5o, the analysis will be carried out for the case of

heat transfer from the wall to the fluid (tw > ta) , but it is to be remem-

bered that the results apply to both situations depicted in the sketches.

A definite class of variations of the wall heat flux will be pre-
scribed. Suppose that the region of interest on the vertical plate lies
between x = O and another location x = X1, (xL must 1ie in the region
of laminar flow over the plate). The wall heat fluxes to be considered
here have a finite nonzero value at x = O and elther increase steadily
from x=0 to x = Xp, or else decrease steadily fram x =0 +to
X = XL.

The form of the wall-temperature variations considered here is sim-
jlar to that outlined for the wali-heat-flux variations. The well tem-
perature relative to ambient has a finite nonzero value at x = 0 and
either rises steadily from x =0 to x = Xy, or else decreases stead-

iy fram x =0 to x = xy.

Although the enalysis made here is for free convection in a gravity
field, it msy easily be generalized to :anlude_ other force fields. It
is only necessary to replace the gravitational force per unit mass g
by the body force per unit mass of the other force field under
consideration.

BASTIC EQUATIONS
The equstions expressing conservation of mass, momentum, end energy

for steady laminer flow in a boundary layer on a vertical flat plate are
as follows:

%+%=o (1)
u?—ai+v%=g[3(t-ta)+v-§2—g (2)

U— + V== —p (3)

(A11 symbols ere defined in appendix A.) In accordance with the usual
practice in free convection, the density is considered a variable In
formilating the buoyancy term gB(t - 'ba) . Aside from this, the fluid
properties are taken constant. Viscous dissipation and work ageinst
the gravity fleld are neglected.

3430



0g%e

NACA TN 3508 5

Following reference 3, it 1s assumed that a camon boundary-layer
thickness 8 can be used for both velocity and thermal boundary leyers.
This assumption has its Jjustification in the fact that the results of
calculations performed with it are in good agreement with those from
exact solutions of the boundary-layer differential equations for the
cases of uniform wall temperature and uniform heat flux.

Then, equations (1) to (3) are integrated across the boundary
layer to give

5
d%c—[j uzdb.:] = 85\[ (t - tglay - "(%)y:o (22)
%[/f u(t - ta)dy] = - a(%) (3)
¥=0

The %ntegrated form of equation (1) has been absorbed into equations (2a)
and (3a).

These equations have a definite physical meaning. They are, in fact,
expressions of the conservation laws for the element of boundary layer
shown in the following sketch:

T
dx ¢
X

-&——5-——'4

Sketch (c)

Solutions for the velocity and temperature in the boundary layer
will be obtained which satisfy these conservetion equations and the
boundary conditions. These solutions will in turn be used to calculate
the important heat-transfer parameters.
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ANALYSIS
Prescribed Nonuniform Wall Heat Flux

The analysis proceeds with the use of the Kdrmén-Pohlhausen method,
according to which the velocity and temperature distributions in the
boundary layer are written as polynomials in y whose coefficients are
functions of x. The coefficients are found from the boundary conditions
of the problem and by using the integrated momentum and energy equations
(egs. (2a) and (3a)).

The following polynomials are chosen:
@ (, 7Y

a” 2k (l - 5) (4)
2 .

Equation (4) satisfies the conditioms: % = - % vhen y =0; t =1,
and % = O (smooth-fit condition) when y = 8. The wall heat flux q
is to be regarded as a specified function of x. The conditions satis-
fied by equation (5) are: =0 vhen y=0; u=0 and Qu _ o}

(smooth-fit condition) when y = 8. The functions w(x) and &(x) still
remain to be determined.

t -

ct

=n Y
u=og

P
o

The polynomials representing the velocity and temperature distribu-
tions are introduced into equations (2a) and (3a), and after the inte-
gration is carried out, there results a pair of first order, ordinary
differential equations for ® and 8. In dimensionless form, these
equations are

1 4 2 _Azq 9
T 88 =F i a4 (8)
1 dfo2a )2
SOGX(QAQ) Pr g (7)

X, , and A are the dimensionless counterparts of x, w, and © and
are defined in the symbol list (appendix A). The symbol 4ys which
represents the heat flux at the leading edge (x = 0), is used as a
reference heat flux in the rest of the analysis.

3430
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Next, the variation of q/qo is to be prescribed. Suppose that
the region of interest on the vertical plate lies between x =0 and
another location x = ¥j. The surface heat fluxes to be considered here

have finite nonzero values at x = O and either increase steadily from
=0 to x = Xy, or else decrease steadily from x =0 to x = x7.

Explicitly, the class of surface-heat-flux variations to be considered
is written as

r

'f“ =1z a(—%) | (8)

(o]

The exponent 1, which gives the shape of the variation, is required to
be a positive number, integral or nonintegral. Fram equation %u) , 1t
mey be seen that € represents the meximm (percentage) deviation of
q from 4y in the region x =0 to x = xj.

For the q/ given by eguation (8) , the pair of differential

equations (6) and (7) can be solved by expsnding & and A in Maclaurin
series 1n terms of € as follows:

2(X,e,Pr,r) = E enszn(X,Pr,r) = @o(X,Pr,r) +eQ,(X,Pr,r) + +-- (9)
n=0

A(X,e,Pr,r) = E enAn(X,Pr,r) = Ay(X,Pr,r) + &4 (X,Pr,r) + ---(10)

n=0

The expressions for &, A and q/qo are introduced into equations

(6) end (7). Terms are grouped according to the power of & that mul-
tiplies them, that is,

.
e[lOSdX(gOAO) %Q-—l-%g]+sll: :]+"°=O (11)

PR P I

In order that equations (11) and (12) be satisfied for any value of e,
each of the brackets must be identically zero. Equating to zero the
brackets multiplying 0 yields a pair of simmltaneous equations for
2y eand 4A,. In a similar fashion, the brackets multiplying e give

a pair of equations for and An It may be noted that the equations
for &, amnd An will include all the o through gn-l and the Ao

through 4 ;-

it
(o]

(12)
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The solution for Rn eand A?, which coincides with the results
0]

for uniform wall heat flux (& = 0), is treated more fully in appendix
B. The succeeding &, and A, evidently give the effects of the non-

uniformity of the heat f£lux.

The first five functions in the Maclaurin series (Qp through 2,
and 4y through A4) have been computed. The results are listed in
concise form as follows:

A, = (@)" Xn(Pr,r)(%—)nrxl/ ° (13)
g, = (&) rn(m,r)(%frﬁ/ 5 (14)

The factors )‘n and Y, were calculated from linear algebralc equations.

The results thus found are applied in a later section in which the
heat-transfer parameters are obtained.

Prescribed Nonuniform Well Temperature

The analysis for the prescribed-nonuniform-wall-temperature case
proceeds in & similar fashion to that for the prescribed heat-flux case.
The temperature and velocity profiles in the boundary layer are approxi-
mated by the following polynomials:

t -t = (b, - %) (1 - %)2 = e( - %)2 (15)
2
u=ol(1-1) (16)

Equation (15) satisfies the conditions: t =t when y = 0; t = t,
and % =0 vwhen y = 5. The wall temperature tw is to be regarded

as a specified function of x. Since the ambient temperature t, is

taken to be constant, then 8 is regerded as & prescribed function of
X. The conditions satisfied by equation (16) are: u =0 vhen y = O;

du
u=0 and =0 when y = 5.
Sy

The variation of the wall temperature t,, 1s prescribed in a re-
glon of interest between x = O and some other location x = xy. The

wall tempersture relative to ambient considered here has a finite non-
zero value et x = 0 and will either increase steadily from x =0 +to

3420
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X =X or else decrease steadlily from x =0 to x = xj. The explicit
form of the temperature varistion considered here is

by - by = (b, - ta)x=0|7i' * G(KXZ)I] (17)

6 = 6, [1 £ e(%L-)l] (172)

Again, the exponent r d1s a positive number, integral or noninte .
As may be seen fram equation (17a), € is the maximum (percentage) 4
viation of 6 from 6, in the region O0< x < X -

or

Equations (15) and (16) are introduced into the integrated momentum
and energy equations (eqs. (2a) and (3a)). The resulting simultaneous
equations for ® and & are solved subject to the prescribed wall-
tempersture variation (eq. (17)) using Maclaurin series. The first five
functions in the Macleurin series have been calculated. The results
have a form similar to those given in eguations (13) and (14). The
solution for the uniform-wall-temperature case coincides with the lead-
ing term of the Maclaurin series expansion.

HEAT-TRANSFER RESULTS
Prescribed Nomumniform Wall Heat Flux
For the case where the wall heat flux is prescribed, it is of in-
terest to determine the resulting well-temperature variation and local

heat-~-transfer coefficients.

Resulting wall-temperature variation. - The wall temperature is ob-
tained by setting y equal to O in equation (4). Thus,

. gd
t - b < B (18)

RO ERE -

For a uniform wall heat flux q = g,, it has already been noted that
A = Ngy; so,

or

S = (b, - ta)g (19)
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vhere (& - tg) o is the wall-temperature variation corresponding to a

uniform heat flux g = q,. In equation (18a), A/AO is evaluated from
equations (8), (10), and (13), amnd qOBO/Zk is evalusted from equation
(19), giving the result

(-4
t. -t -
'(E‘i_ﬁ—= r E %(‘CL - 1) (20)
W a q‘O q‘o q-o
n=0
This equation gives the ratio of the wall tempera‘burez at some loca-
tion x (x st) heving a specified ratio q/qo to the wall temperature
at the same location on a plate having a uniform heat flux g = .
Since the A's depend upon the Prandtl number and r, the temperature
ratio given by equation (20) depends on q/qo, Pr and r.
(t, - tg)
The ratio is plotted in figures 1(a) to (e). Each of
<tw - ta.jqo

the plots applies for a specific value of r. The values of r = O, 1/2,
l, 2, and 3 have been used for the flve plots. Resulis for other values

of T mey be obtained by replO'l:ting3 the Information glven in figures
1(a) to (e) using r as the abscissa varisble. On each of the plots,
the temperature ratio is plotted against q/qo for the range

0.5 < q/qo < 1.5 with Prandtl numbers between 0.01 and 1000 appearing
as parameters on the curves. In cases where curves for different Prandtl

numbers fall so close together as to make it impossible to plot them
separately, one curve was used for the several Prandtl numbers.

t -t
Once the ratio W __ &  hag been determined from one of the
(tw - ta)q_o

figures (or by replotting the data given therein), the wall temperature
(t, - t,) cen be found if an expression for (t, - ta)qo is given. The

expression for (tw - ta) a,’ the wall temperature corresponding to the

caese of uniform heet flux g = a4y is derived in eppendix B by the
KérmAn-Pohlheusen method, end appears on figure 1.

2"Relative to ambient' is to be understood every time the well tem-
perature is mentioned.

3. = 0 4is & limiting case, which is included here to facilitate
the replotting when results for r near zero are required.

3430
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Local heat-transfer coefficient. - The definition of the local
heat-transfer coefficient is

T - (21)
For the case of a uniform heat flux q = a4, equation (21) is
% (212)
= 2la
hx;qo ‘bw - ta q, ‘

The ratio of equation (21) to equation (2la) is

i S —(—-—-)—(tw " tela, (22)
hx,qo - qo tw - ta

This equation gives the ratio of the local coefficient at some position
x having a specified ratio q/qo to the local coefficient at the same

position on a plate having a uniform well heat flux q = - When q/qo,

Pr and r are known, the temperature ratio appearing in equation (22)

is known (from fig. ls; hence, hx/hx g ¢8n be calculated. The expres-
o)

sion hx’qo is given in appendix B.

“Prescribed Nonuniform Wall Temperature

For the case where the wall temperature is specified, it is of in-
terest to calculate the over-all heat-transfer rate and local heat-
transfer coefficlents.

Over-all hegt-transfer rate. - The over-all rate of heat transfer
in & section of plate of width b from x = O to another location

x(x < %) is
Q=b\/o"qux=-kb\/o-e((%)y=odx (23)

The derivative (ot/dy) y=0 18 evaluated from equation (15). Substitution
into equation (23) gives

Q:mfﬁ;ﬂdx=zkbf%dx (24)
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For the case of uniform wall tempersture 6 = 60, equation (24) becomes

- dx
Qeo = 2kbO_ [ % (25)

The ratio of equation (24) to equation (25) is

‘/‘xiﬁ
_Yw0 % 5% (26)
S

(0] 80

Bquation (26) is the ratio of the over-all heat transfer from
=0 tox (x <:xL) on a plate with variable surface temperature to

the heat transferred in the same region on a plate with a uniform wall
temperature 6 = o Since & corresponding to the prescribed wall-

temperature variation (eq. (17)) hes been calculated in the Analysis
section, it is possible to evaluate the integrals appearing in equation

(28).

The results for Q/Q, , which are shown in figures 2(a) to (e),
o

depend upon the value of 6/60 at the location x, upon Prandtl num-
ber, and upon r. BEach plot is for a specific value of . The values
of 0, 1/2, 1, 2, and 3 have been used for the five plots. Results for
other values of r may be obtained by replotting the information given
in figures 2(a) to (e) with r as the ebscissa variable. On each plot,
the ratio Q/Qe is plotted ageinst 6/6, for the range 0.7<6/6 <1.3,
with Prandtl numbers between 0.01 and 1000 appearing as a parameter on
the curves.

It is to be emphasized that the value of 6/90 at x 1s to be
used for determining values from the figure when the over-all heat trans-
fer from x =0 to x is required. The quantity Qg , which is the

o)

over-all heat-transfer rate from x = 0 to x on a plate having uni-
form surface temperature 6 = 60, is calculated in reference 3 by the

Kérmén-Pohlhsusen method. The expression for Q 1is given in
figure 2. °

Iocal heat-transfer coefficient. - From the defining equation (eq.
(21)), the local coefficient is found to be

ot
q —k( )3’=° gk (27)

By (€, - t_) t - t, ©

3430
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The derivative is obtelned from equation (15). For uniform wall temper-
ature 6 = 6,, & = B,; therefore

& =ty (28)

where hx,eo is the local coefficient for the case of a uniform wall
temperature 6 = 6_. Combining equations (27) and (28) gives

5
hxé: 7? (29)

o

This ratio is plotted in figures 3(a) to (e) in the menner already out-
lined for the preceding results of the anaslysis. The expression for
by 6 (fram ref. 3) is given on the figure.

o

DISCUBSION

The following generalizations can be made from inspection of the
results:

(1) At a location x with a fixed q/qo, the deviation of

b, -ty

by -ty do

number. Also, the-deviation from 1 is larger for larger Prandtl numbers
et a fixed T and q/qo

from 1 increases with decreasing r for a fixed Prandtl

(2) In a length of plate between x =0 and x, having a fixed
6/90 at x, it is seen that the deviation of Q/Q,e from 1 increases
o}

with decreesing r at a fixed Prandtl mumber. Also, the deviation from
1l is smaller for the larger Prandtl numbers at a fixed r and 6/60.

(3) The deviation of h./h 4 from 1 increases with increasing r
2
at a fixed Prandtl number and a fixed q/qo at x. Also, the deviation

from 1 is smaller for the larger Prandtl numbers at a fixed r and q/qo.

(4) The deviation of hx/hx,e from 1 increases with increasing r
o

at a fixed Prandtl number and & fixed 6/6, at x. Also, the deviation
from 1 is smeller for the larger Prandtl numbers at a fixed r and

0/6, .
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- %
It has already been noted that the temperature ratio -(t—_t—s‘i—
w a q‘O

was plotted in figure 1 for 0.5 < q/q0< 1.5. This range was decided

upon by studying the extent of the errors due to truncation of the
infinite series in equation (20) after n = 4. The range

0.7 < e/eo< 1.3 used in figures 2 and 3 was decided upon by studying
the truncation errors of series associated with equations (26) and (29).

CONCLUDING REMARKS

3430

When the nonuniform wall heat flux can be written in the form of
equation (8) , the resulting wall temperatures may be found directly from
figure 1, and the local heat-transfer coefficient can be calculated from
equation (22). All that is needed to use the graphs is the value of
q7 at the point of interest, the exponent r which gives the shape
of the q/qo variation, and the Prandtl number. It is to be noted that

€ is not needed.

When the wall temperature is specified by a relation of the form of
equation (17), the over-all heat-transfer rate and local coefficients are
found from figures 2 and 3, respectively. The over-all heat-transfer
rate for a section of plate from x = 0 to x (x € x;) may be found from

the graphs when the following are known: 9/90 at x, the exponent r
which gives the shape of the 6/ 8, veriation, and the Prandtl number.

The same quantities are needed to f£ind the local heat-transfer coefficient
at x.

It is recognized thet whenever a new application of the Kérmin-
Pohlhausen method is made, it 1s desirable to confirm the results by
checking with those of experiment or of a less approximete analysis.

The author is not acquainted with any experimental data that may be
used to check the results derived here for nonuniform thermsl conditions
at the surface. Nor is there now available any other anslysis with which
the present results may be campared.

For the specisl casges of uniform well temperature and uniform heat
flux, there are exact solutions of the laminar-boundary-leyer equations
as well ss experimental data. For these cases, the heat-transfer re-
sults derived from the Kdrmin-Pohlhausen method agree well with those
from the exact solutions and those of experiment.

Lewis Flight Propulsion Laborsatory
National Advisory Committee for Aeronautics

Cleveland, Ohio, May 4, 1955
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

b width of plate, ft
cy gpecific heat at constant pressure, Btu/(1b)(°F)
g acceleration due to gravity, ft/sec2
3# ngoxq“
Gr ¥ modified Grashof number based on x, ————, dimensionless
3 kv
gﬁeox
Gr,. Grashof number based on X, — dimensionless
v
b local heat-transfer coefficient, Btu/(sec)(sq £t)(°F)
k thermal conductivity, Btu/(sec)(£t)(°F)
n index for naming terms of a series, dimensionless
cpp v
Pr Prandtl number, S dimensionless
Q over-all heat-transfer rate on a plate of width b be-
tween x =0 and x (x <€ x), Btu/sec
q local heat-trensfer rate per unit area, Btu/(sec)(sq f£t)
a4, heat-transfer rate per unit area at x = 0, Btu/(sec)(sq £t)
T exponent defined by egs. (8) and (17), dimensionless
t static temperature, °F
u velocity component in x-direction, f‘l:/sec
v velocity component in y-direction, ft/sec
b d coordinate measuring distance along plete from leading
edge, Tt
Xy, coordinate defining region of interest x =0 to x = x5,
£t

gBag 1/4
X dimensionless coordinate, —];,—2- X
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coordinate measuring normal distance from plate, ft

thermal diffusivity, 5%—, sq ft/sec
b

coefficient of thermsl expansion, (OF)_l

fa%togs in solutions for 520,91,---9n defined by eq.
14), dimensionless

dimensionless boundary—layer thickness for prescribed-
1/4
ngg)

> s}

heat-flux case,
kv

coefficients in Maclaurin series expansion of A in
terms of ¢, dimensionless

boundary-layer thickness, ft

boundary-layer thickness for uniform heat flux or uniform

wall temperature, ft

number giving percentage deviation of q at x = X, from

q,s Or number giving percentage deviation of 8 at
X = XL from Go, dimensionless

wall- to ambient-temperature difference, t& - tgy, OF

wall-to ambient~temperature difference at x = 0, O

factors in solutions for Ab,Ai,--aAh defined by eq.
(13), dimensionless

sbsolute viscosity, 1b/(sec)(ft)
kinematic viscosity, sg ft/sec
density, 1b/cu ft

velocity function defined by egs. (5) and (168), ft/sec

2\-1/4
ghaoY
dimensionless velocity function, % w

coefficients in Maclaurin series expansion of & in
terms of €, dimensionless

3430
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Subscripts:

a embient

qo on a plate having uniform heat flux 45

W wall

90 on & plate having uwniform wall- to smbient-temperature

difference 90

17
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APPENDIX B

RESULTS FOR UNIFORM WALIL HEAT FLUX

When gq’= g, for all values of x, equations (6) and (7) become

2 9
RIFRPNE o
% & ) = & (82)
The solutions for 9‘0 and Ay are
Q2 = (6000)1/5 pr~1/ 5(% + Pr) 2/ /5 (B3)
ng = (360) 5(% + Pr) S els 2l (B4)
Equation (B4) can be rewritten as
4 1/5
Z+Pr
% = % - (360)-/® Pi;Gr* (B5)

where Gr;' is a modified Grashof number based on x and defined by

gbax"
Gt = = (s6)
kv

The surface-temperature distribution found by introducing equation (BS)
into equation (18) is

1/5
9% 10.8 + Pr
t. -t ) =1.622 : B7
The local heat-transfer coefficient is obtained by the following
rearrangement of equation (B7):
pr? gr¥ 1/5
n = 9o _0.62 k( l’x) (8)
29y (E% - ta)qo X 0.8 + Pr
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Figure 1. - Ratio of wall temperature at some locatlion

x on plate with variable heat flux to wall

temperature at same location on plate with uniform heat f1

8 prescribed); Prandtl number is parameter ¢n curves.

Abscissa is value of
?;S at point of interest; r 1s an exponent in equation (3)(relat on by which heat-flux varia-
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Figure 1. - Continued. Ratio of wall temperaturs at some lcoation x on plate with varlable heat
flux to wall temperature at same looation on plate with uniform heat flux q = . Abaolssa ls
value of qy et point of interest; r is an exponent in equation (8)(ralation by which heat-
flux variastion is prescribed); Prandtl number 1s parameter on ourvas.
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Figure 2. - Ratio of over-all heat transfer from x= 0 to x on plate
with variable wall temperature to over-all heat transfer 1in same region
on plate with uniform wall temperature 6 = 8, . Abscissa 1s value of
9/90 at x; r 1s an exponent in e tion (19)(relation by wich wall-
temperature variation is prescribed); Prandtl number is parameter on
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Ratio of over-all heat transfer from

x =0 to x on plate with variable wall temperature to over-
all heat transfer in same reglon on plate with uniform wall

temperature

=86, .
an exponent 1is equgtion (17)

Absclssa is value of 6/6, at x; r 1is
relation by which wall-tempera-

ture variation is prescribed); Prandtl number is parameter on

curves.
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Figure 2. - Continued. Ratio of over-all heat trans-
- fer from x =0 to x on plate with varlable wall
temperature to over-all heat transfer in same re-
glon on plate with uniform wall temperature 6 = 6,
Abscissa is value of 6/6o at x; r 1s an exponent
in equation (17)(relation by which wall-temperature

varliation is prescribed); Prandtl number 1s param-
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Flgure 3. -~ Ratio of local heat-transfer coefficient at x for
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tion (17)(relation by which wall-temperature variation is pre-
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Pigure 3. - Continued. Ratio of local heat-transfer coefficlent
at x for plate with varilable wall temperature to local coeffl-

cient at same location on plate with uniform wall temperature
6 = 0, . Abscissa is value of 6/6,

at x; r 1is an exponent
in equation (17)(relation by which wall-temperature varlation
is prescribed); Prandtl number 1is parameter on curves.
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Figure 3. - Continued. Ratio of local heat-transfer coefficient
at x for plate with variable wall temperature to local coeffi-
clent at same location on plate with uniform wall temperature
6 = 6, . Abscissa 1s value of 6/6, at x; r 1s an exponent
in equation (17)(relation by which wall-temperature variation
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